Solve for x
x=11
Graph
Share
Copied to clipboard
2\left(x+2\right)-12\left(\frac{11-x}{3}-\frac{1}{4}\right)=3x-4
Multiply both sides of the equation by 12, the least common multiple of 6,3,4,12.
2x+4-12\left(\frac{11-x}{3}-\frac{1}{4}\right)=3x-4
Use the distributive property to multiply 2 by x+2.
2x+4-12\left(\frac{4\left(11-x\right)}{12}-\frac{3}{12}\right)=3x-4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{11-x}{3} times \frac{4}{4}. Multiply \frac{1}{4} times \frac{3}{3}.
2x+4-12\times \frac{4\left(11-x\right)-3}{12}=3x-4
Since \frac{4\left(11-x\right)}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
2x+4-12\times \frac{44-4x-3}{12}=3x-4
Do the multiplications in 4\left(11-x\right)-3.
2x+4-12\times \frac{41-4x}{12}=3x-4
Combine like terms in 44-4x-3.
2x+4-\frac{12\left(41-4x\right)}{12}=3x-4
Express 12\times \frac{41-4x}{12} as a single fraction.
2x+4-\left(41-4x\right)=3x-4
Cancel out 12 and 12.
2x+4-41-\left(-4x\right)=3x-4
To find the opposite of 41-4x, find the opposite of each term.
2x+4-41+4x=3x-4
The opposite of -4x is 4x.
2x-37+4x=3x-4
Subtract 41 from 4 to get -37.
6x-37=3x-4
Combine 2x and 4x to get 6x.
6x-37-3x=-4
Subtract 3x from both sides.
3x-37=-4
Combine 6x and -3x to get 3x.
3x=-4+37
Add 37 to both sides.
3x=33
Add -4 and 37 to get 33.
x=\frac{33}{3}
Divide both sides by 3.
x=11
Divide 33 by 3 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}