Evaluate
\frac{x\left(x^{2}-1\right)}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Expand
\frac{x^{3}-x}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}}{x-6+\frac{7}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{\left(x+2\right)\left(x-2\right)+3}{x-2}}{x-6+\frac{7}{x}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{3}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x-4+3}{x-2}}{x-6+\frac{7}{x}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+3.
\frac{\frac{x^{2}-1}{x-2}}{x-6+\frac{7}{x}}
Combine like terms in x^{2}-2x+2x-4+3.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)x}{x}+\frac{7}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-6 times \frac{x}{x}.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)x+7}{x}}
Since \frac{\left(x-6\right)x}{x} and \frac{7}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}-6x+7}{x}}
Do the multiplications in \left(x-6\right)x+7.
\frac{\left(x^{2}-1\right)x}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Divide \frac{x^{2}-1}{x-2} by \frac{x^{2}-6x+7}{x} by multiplying \frac{x^{2}-1}{x-2} by the reciprocal of \frac{x^{2}-6x+7}{x}.
\frac{x^{3}-x}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Use the distributive property to multiply x^{2}-1 by x.
\frac{x^{3}-x}{x^{3}-6x^{2}+7x-2x^{2}+12x-14}
Apply the distributive property by multiplying each term of x-2 by each term of x^{2}-6x+7.
\frac{x^{3}-x}{x^{3}-8x^{2}+7x+12x-14}
Combine -6x^{2} and -2x^{2} to get -8x^{2}.
\frac{x^{3}-x}{x^{3}-8x^{2}+19x-14}
Combine 7x and 12x to get 19x.
\frac{\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}}{x-6+\frac{7}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{\left(x+2\right)\left(x-2\right)+3}{x-2}}{x-6+\frac{7}{x}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{3}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x-4+3}{x-2}}{x-6+\frac{7}{x}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+3.
\frac{\frac{x^{2}-1}{x-2}}{x-6+\frac{7}{x}}
Combine like terms in x^{2}-2x+2x-4+3.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)x}{x}+\frac{7}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-6 times \frac{x}{x}.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)x+7}{x}}
Since \frac{\left(x-6\right)x}{x} and \frac{7}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}-6x+7}{x}}
Do the multiplications in \left(x-6\right)x+7.
\frac{\left(x^{2}-1\right)x}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Divide \frac{x^{2}-1}{x-2} by \frac{x^{2}-6x+7}{x} by multiplying \frac{x^{2}-1}{x-2} by the reciprocal of \frac{x^{2}-6x+7}{x}.
\frac{x^{3}-x}{\left(x-2\right)\left(x^{2}-6x+7\right)}
Use the distributive property to multiply x^{2}-1 by x.
\frac{x^{3}-x}{x^{3}-6x^{2}+7x-2x^{2}+12x-14}
Apply the distributive property by multiplying each term of x-2 by each term of x^{2}-6x+7.
\frac{x^{3}-x}{x^{3}-8x^{2}+7x+12x-14}
Combine -6x^{2} and -2x^{2} to get -8x^{2}.
\frac{x^{3}-x}{x^{3}-8x^{2}+19x-14}
Combine 7x and 12x to get 19x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}