Solve for x
x=\frac{18y+55}{13}
y\neq -11
Solve for y
y=\frac{13x-55}{18}
x\neq -11
Graph
Share
Copied to clipboard
13\left(x+11\right)=18\left(y+11\right)
Multiply both sides of the equation by 13\left(y+11\right), the least common multiple of y+11,13.
13x+143=18\left(y+11\right)
Use the distributive property to multiply 13 by x+11.
13x+143=18y+198
Use the distributive property to multiply 18 by y+11.
13x=18y+198-143
Subtract 143 from both sides.
13x=18y+55
Subtract 143 from 198 to get 55.
\frac{13x}{13}=\frac{18y+55}{13}
Divide both sides by 13.
x=\frac{18y+55}{13}
Dividing by 13 undoes the multiplication by 13.
13\left(x+11\right)=18\left(y+11\right)
Variable y cannot be equal to -11 since division by zero is not defined. Multiply both sides of the equation by 13\left(y+11\right), the least common multiple of y+11,13.
13x+143=18\left(y+11\right)
Use the distributive property to multiply 13 by x+11.
13x+143=18y+198
Use the distributive property to multiply 18 by y+11.
18y+198=13x+143
Swap sides so that all variable terms are on the left hand side.
18y=13x+143-198
Subtract 198 from both sides.
18y=13x-55
Subtract 198 from 143 to get -55.
\frac{18y}{18}=\frac{13x-55}{18}
Divide both sides by 18.
y=\frac{13x-55}{18}
Dividing by 18 undoes the multiplication by 18.
y=\frac{13x-55}{18}\text{, }y\neq -11
Variable y cannot be equal to -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}