Solve for z
z=-\frac{ix}{2}+\left(1-\frac{1}{2}i\right)
x\neq -1
Solve for x
x=2iz+\left(-1-2i\right)
z\neq 1
Share
Copied to clipboard
x+1=2i\left(z-1\right)
Variable z cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by z-1.
x+1=2iz-2i
Use the distributive property to multiply 2i by z-1.
2iz-2i=x+1
Swap sides so that all variable terms are on the left hand side.
2iz=x+1+2i
Add 2i to both sides.
2iz=x+\left(1+2i\right)
The equation is in standard form.
\frac{2iz}{2i}=\frac{x+\left(1+2i\right)}{2i}
Divide both sides by 2i.
z=\frac{x+\left(1+2i\right)}{2i}
Dividing by 2i undoes the multiplication by 2i.
z=-\frac{ix}{2}+\left(1-\frac{1}{2}i\right)
Divide x+\left(1+2i\right) by 2i.
z=-\frac{ix}{2}+\left(1-\frac{1}{2}i\right)\text{, }z\neq 1
Variable z cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}