Solve for x
x=-\frac{1}{4}=-0.25
Graph
Share
Copied to clipboard
\left(x+1\right)\left(x+1\right)+x-2=\left(x-2\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+1\right), the least common multiple of x-2,x+1.
\left(x+1\right)^{2}+x-2=\left(x-2\right)\left(x+1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
x^{2}+2x+1+x-2=\left(x-2\right)\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+3x+1-2=\left(x-2\right)\left(x+1\right)
Combine 2x and x to get 3x.
x^{2}+3x-1=\left(x-2\right)\left(x+1\right)
Subtract 2 from 1 to get -1.
x^{2}+3x-1=x^{2}-x-2
Use the distributive property to multiply x-2 by x+1 and combine like terms.
x^{2}+3x-1-x^{2}=-x-2
Subtract x^{2} from both sides.
3x-1=-x-2
Combine x^{2} and -x^{2} to get 0.
3x-1+x=-2
Add x to both sides.
4x-1=-2
Combine 3x and x to get 4x.
4x=-2+1
Add 1 to both sides.
4x=-1
Add -2 and 1 to get -1.
x=\frac{-1}{4}
Divide both sides by 4.
x=-\frac{1}{4}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}