Solve for x (complex solution)
x=\frac{-m-1}{2}
m\neq 3\text{ and }m\neq -3
Solve for m
m=-2x-1
x\neq -2\text{ and }x\neq 1
Solve for x
x=\frac{-m-1}{2}
|m|\neq 3
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x+1\right)-\left(x+2\right)x=m
Variable x cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right), the least common multiple of x+2,x-1,x^{2}+x-2.
x^{2}-1-\left(x+2\right)x=m
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-\left(x^{2}+2x\right)=m
Use the distributive property to multiply x+2 by x.
x^{2}-1-x^{2}-2x=m
To find the opposite of x^{2}+2x, find the opposite of each term.
-1-2x=m
Combine x^{2} and -x^{2} to get 0.
-2x=m+1
Add 1 to both sides.
\frac{-2x}{-2}=\frac{m+1}{-2}
Divide both sides by -2.
x=\frac{m+1}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{-m-1}{2}
Divide m+1 by -2.
x=\frac{-m-1}{2}\text{, }x\neq -2\text{ and }x\neq 1
Variable x cannot be equal to any of the values -2,1.
\left(x-1\right)\left(x+1\right)-\left(x+2\right)x=m
Multiply both sides of the equation by \left(x-1\right)\left(x+2\right), the least common multiple of x+2,x-1,x^{2}+x-2.
x^{2}-1-\left(x+2\right)x=m
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-\left(x^{2}+2x\right)=m
Use the distributive property to multiply x+2 by x.
x^{2}-1-x^{2}-2x=m
To find the opposite of x^{2}+2x, find the opposite of each term.
-1-2x=m
Combine x^{2} and -x^{2} to get 0.
m=-1-2x
Swap sides so that all variable terms are on the left hand side.
\left(x-1\right)\left(x+1\right)-\left(x+2\right)x=m
Variable x cannot be equal to any of the values -2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right), the least common multiple of x+2,x-1,x^{2}+x-2.
x^{2}-1-\left(x+2\right)x=m
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1-\left(x^{2}+2x\right)=m
Use the distributive property to multiply x+2 by x.
x^{2}-1-x^{2}-2x=m
To find the opposite of x^{2}+2x, find the opposite of each term.
-1-2x=m
Combine x^{2} and -x^{2} to get 0.
-2x=m+1
Add 1 to both sides.
\frac{-2x}{-2}=\frac{m+1}{-2}
Divide both sides by -2.
x=\frac{m+1}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{-m-1}{2}
Divide m+1 by -2.
x=\frac{-m-1}{2}\text{, }x\neq -2\text{ and }x\neq 1
Variable x cannot be equal to any of the values -2,1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}