Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x+6\right)\left(x+1\right)+\left(6x+12\right)\left(x+2\right)=7\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x+1,6.
6x^{2}+12x+6+\left(6x+12\right)\left(x+2\right)=7\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 6x+6 by x+1 and combine like terms.
6x^{2}+12x+6+6x^{2}+24x+24=7\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 6x+12 by x+2 and combine like terms.
12x^{2}+12x+6+24x+24=7\left(x+1\right)\left(x+2\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+36x+6+24=7\left(x+1\right)\left(x+2\right)
Combine 12x and 24x to get 36x.
12x^{2}+36x+30=7\left(x+1\right)\left(x+2\right)
Add 6 and 24 to get 30.
12x^{2}+36x+30=\left(7x+7\right)\left(x+2\right)
Use the distributive property to multiply 7 by x+1.
12x^{2}+36x+30=7x^{2}+21x+14
Use the distributive property to multiply 7x+7 by x+2 and combine like terms.
12x^{2}+36x+30-7x^{2}=21x+14
Subtract 7x^{2} from both sides.
5x^{2}+36x+30=21x+14
Combine 12x^{2} and -7x^{2} to get 5x^{2}.
5x^{2}+36x+30-21x=14
Subtract 21x from both sides.
5x^{2}+15x+30=14
Combine 36x and -21x to get 15x.
5x^{2}+15x+30-14=0
Subtract 14 from both sides.
5x^{2}+15x+16=0
Subtract 14 from 30 to get 16.
x=\frac{-15±\sqrt{15^{2}-4\times 5\times 16}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 15 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 5\times 16}}{2\times 5}
Square 15.
x=\frac{-15±\sqrt{225-20\times 16}}{2\times 5}
Multiply -4 times 5.
x=\frac{-15±\sqrt{225-320}}{2\times 5}
Multiply -20 times 16.
x=\frac{-15±\sqrt{-95}}{2\times 5}
Add 225 to -320.
x=\frac{-15±\sqrt{95}i}{2\times 5}
Take the square root of -95.
x=\frac{-15±\sqrt{95}i}{10}
Multiply 2 times 5.
x=\frac{-15+\sqrt{95}i}{10}
Now solve the equation x=\frac{-15±\sqrt{95}i}{10} when ± is plus. Add -15 to i\sqrt{95}.
x=\frac{\sqrt{95}i}{10}-\frac{3}{2}
Divide -15+i\sqrt{95} by 10.
x=\frac{-\sqrt{95}i-15}{10}
Now solve the equation x=\frac{-15±\sqrt{95}i}{10} when ± is minus. Subtract i\sqrt{95} from -15.
x=-\frac{\sqrt{95}i}{10}-\frac{3}{2}
Divide -15-i\sqrt{95} by 10.
x=\frac{\sqrt{95}i}{10}-\frac{3}{2} x=-\frac{\sqrt{95}i}{10}-\frac{3}{2}
The equation is now solved.
\left(6x+6\right)\left(x+1\right)+\left(6x+12\right)\left(x+2\right)=7\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x+1\right)\left(x+2\right), the least common multiple of x+2,x+1,6.
6x^{2}+12x+6+\left(6x+12\right)\left(x+2\right)=7\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 6x+6 by x+1 and combine like terms.
6x^{2}+12x+6+6x^{2}+24x+24=7\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 6x+12 by x+2 and combine like terms.
12x^{2}+12x+6+24x+24=7\left(x+1\right)\left(x+2\right)
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}+36x+6+24=7\left(x+1\right)\left(x+2\right)
Combine 12x and 24x to get 36x.
12x^{2}+36x+30=7\left(x+1\right)\left(x+2\right)
Add 6 and 24 to get 30.
12x^{2}+36x+30=\left(7x+7\right)\left(x+2\right)
Use the distributive property to multiply 7 by x+1.
12x^{2}+36x+30=7x^{2}+21x+14
Use the distributive property to multiply 7x+7 by x+2 and combine like terms.
12x^{2}+36x+30-7x^{2}=21x+14
Subtract 7x^{2} from both sides.
5x^{2}+36x+30=21x+14
Combine 12x^{2} and -7x^{2} to get 5x^{2}.
5x^{2}+36x+30-21x=14
Subtract 21x from both sides.
5x^{2}+15x+30=14
Combine 36x and -21x to get 15x.
5x^{2}+15x=14-30
Subtract 30 from both sides.
5x^{2}+15x=-16
Subtract 30 from 14 to get -16.
\frac{5x^{2}+15x}{5}=-\frac{16}{5}
Divide both sides by 5.
x^{2}+\frac{15}{5}x=-\frac{16}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+3x=-\frac{16}{5}
Divide 15 by 5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{16}{5}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{16}{5}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{19}{20}
Add -\frac{16}{5} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-\frac{19}{20}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{20}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{95}i}{10} x+\frac{3}{2}=-\frac{\sqrt{95}i}{10}
Simplify.
x=\frac{\sqrt{95}i}{10}-\frac{3}{2} x=-\frac{\sqrt{95}i}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.