Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
x+1=3x\left(x+1\right)+\left(x+1\right)\left(-1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
x+1=3x^{2}+3x+\left(x+1\right)\left(-1\right)
Use the distributive property to multiply 3x by x+1.
x+1=3x^{2}+3x-x-1
Use the distributive property to multiply x+1 by -1.
x+1=3x^{2}+2x-1
Combine 3x and -x to get 2x.
x+1-3x^{2}=2x-1
Subtract 3x^{2} from both sides.
x+1-3x^{2}-2x=-1
Subtract 2x from both sides.
-x+1-3x^{2}=-1
Combine x and -2x to get -x.
-x+1-3x^{2}+1=0
Add 1 to both sides.
-x+2-3x^{2}=0
Add 1 and 1 to get 2.
-3x^{2}-x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 2}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -1 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12\times 2}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-3\right)}
Multiply 12 times 2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-3\right)}
Add 1 to 24.
x=\frac{-\left(-1\right)±5}{2\left(-3\right)}
Take the square root of 25.
x=\frac{1±5}{2\left(-3\right)}
The opposite of -1 is 1.
x=\frac{1±5}{-6}
Multiply 2 times -3.
x=\frac{6}{-6}
Now solve the equation x=\frac{1±5}{-6} when ± is plus. Add 1 to 5.
x=-1
Divide 6 by -6.
x=-\frac{4}{-6}
Now solve the equation x=\frac{1±5}{-6} when ± is minus. Subtract 5 from 1.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=-1 x=\frac{2}{3}
The equation is now solved.
x=\frac{2}{3}
Variable x cannot be equal to -1.
x+1=3x\left(x+1\right)+\left(x+1\right)\left(-1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
x+1=3x^{2}+3x+\left(x+1\right)\left(-1\right)
Use the distributive property to multiply 3x by x+1.
x+1=3x^{2}+3x-x-1
Use the distributive property to multiply x+1 by -1.
x+1=3x^{2}+2x-1
Combine 3x and -x to get 2x.
x+1-3x^{2}=2x-1
Subtract 3x^{2} from both sides.
x+1-3x^{2}-2x=-1
Subtract 2x from both sides.
-x+1-3x^{2}=-1
Combine x and -2x to get -x.
-x-3x^{2}=-1-1
Subtract 1 from both sides.
-x-3x^{2}=-2
Subtract 1 from -1 to get -2.
-3x^{2}-x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-x}{-3}=-\frac{2}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{1}{-3}\right)x=-\frac{2}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{1}{3}x=-\frac{2}{-3}
Divide -1 by -3.
x^{2}+\frac{1}{3}x=\frac{2}{3}
Divide -2 by -3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Add \frac{2}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{5}{6} x+\frac{1}{6}=-\frac{5}{6}
Simplify.
x=\frac{2}{3} x=-1
Subtract \frac{1}{6} from both sides of the equation.
x=\frac{2}{3}
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}