Solve for a
a=\frac{x-1}{2}
x\neq -1
Solve for x
x=2a+1
a\neq -1
Graph
Share
Copied to clipboard
x+1=2\left(a+1\right)
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
x+1=2a+2
Use the distributive property to multiply 2 by a+1.
2a+2=x+1
Swap sides so that all variable terms are on the left hand side.
2a=x+1-2
Subtract 2 from both sides.
2a=x-1
Subtract 2 from 1 to get -1.
\frac{2a}{2}=\frac{x-1}{2}
Divide both sides by 2.
a=\frac{x-1}{2}
Dividing by 2 undoes the multiplication by 2.
a=\frac{x-1}{2}\text{, }a\neq -1
Variable a cannot be equal to -1.
x+1=2\left(a+1\right)
Multiply both sides of the equation by a+1.
x+1=2a+2
Use the distributive property to multiply 2 by a+1.
x=2a+2-1
Subtract 1 from both sides.
x=2a+1
Subtract 1 from 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}