Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{\left(2x-1\right)^{2}}+\frac{3}{\left(2x-1\right)\left(x+3\right)}
Factor 4x^{2}-4x+1. Factor 2x^{2}+5x-3.
\frac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(2x-1\right)^{2}}+\frac{3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-1\right)^{2} and \left(2x-1\right)\left(x+3\right) is \left(x+3\right)\left(2x-1\right)^{2}. Multiply \frac{x+1}{\left(2x-1\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{3}{\left(2x-1\right)\left(x+3\right)} times \frac{2x-1}{2x-1}.
\frac{\left(x+1\right)\left(x+3\right)+3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}}
Since \frac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(2x-1\right)^{2}} and \frac{3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+3x+x+3+6x-3}{\left(x+3\right)\left(2x-1\right)^{2}}
Do the multiplications in \left(x+1\right)\left(x+3\right)+3\left(2x-1\right).
\frac{x^{2}+10x}{\left(x+3\right)\left(2x-1\right)^{2}}
Combine like terms in x^{2}+3x+x+3+6x-3.
\frac{x^{2}+10x}{4x^{3}+8x^{2}-11x+3}
Expand \left(x+3\right)\left(2x-1\right)^{2}.
\frac{x+1}{\left(2x-1\right)^{2}}+\frac{3}{\left(2x-1\right)\left(x+3\right)}
Factor 4x^{2}-4x+1. Factor 2x^{2}+5x-3.
\frac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(2x-1\right)^{2}}+\frac{3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-1\right)^{2} and \left(2x-1\right)\left(x+3\right) is \left(x+3\right)\left(2x-1\right)^{2}. Multiply \frac{x+1}{\left(2x-1\right)^{2}} times \frac{x+3}{x+3}. Multiply \frac{3}{\left(2x-1\right)\left(x+3\right)} times \frac{2x-1}{2x-1}.
\frac{\left(x+1\right)\left(x+3\right)+3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}}
Since \frac{\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(2x-1\right)^{2}} and \frac{3\left(2x-1\right)}{\left(x+3\right)\left(2x-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{2}+3x+x+3+6x-3}{\left(x+3\right)\left(2x-1\right)^{2}}
Do the multiplications in \left(x+1\right)\left(x+3\right)+3\left(2x-1\right).
\frac{x^{2}+10x}{\left(x+3\right)\left(2x-1\right)^{2}}
Combine like terms in x^{2}+3x+x+3+6x-3.
\frac{x^{2}+10x}{4x^{3}+8x^{2}-11x+3}
Expand \left(x+3\right)\left(2x-1\right)^{2}.