Evaluate
\frac{2+4x-x^{2}}{3\left(4-x^{2}\right)}
Expand
-\frac{x^{2}-4x-2}{3\left(4-x^{2}\right)}
Graph
Share
Copied to clipboard
\frac{x+1}{3\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(-x-2\right)}
Factor 3x+6. Factor 4-x^{2}.
\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{-3x}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x}{\left(x-2\right)\left(-x-2\right)} times \frac{-3}{-3}.
\frac{\left(x+1\right)\left(x-2\right)-3x}{3\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{-3x}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+x-2-3x}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x+1\right)\left(x-2\right)-3x.
\frac{x^{2}-4x-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-2x+x-2-3x.
\frac{x^{2}-4x-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).
\frac{x+1}{3\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(-x-2\right)}
Factor 3x+6. Factor 4-x^{2}.
\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{-3x}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x}{\left(x-2\right)\left(-x-2\right)} times \frac{-3}{-3}.
\frac{\left(x+1\right)\left(x-2\right)-3x}{3\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{-3x}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+x-2-3x}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x+1\right)\left(x-2\right)-3x.
\frac{x^{2}-4x-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-2x+x-2-3x.
\frac{x^{2}-4x-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}