Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{3\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(-x-2\right)}
Factor 3x+6. Factor 4-x^{2}.
\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{-3x}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x}{\left(x-2\right)\left(-x-2\right)} times \frac{-3}{-3}.
\frac{\left(x+1\right)\left(x-2\right)-3x}{3\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{-3x}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+x-2-3x}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x+1\right)\left(x-2\right)-3x.
\frac{x^{2}-4x-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-2x+x-2-3x.
\frac{x^{2}-4x-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).
\frac{x+1}{3\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(-x-2\right)}
Factor 3x+6. Factor 4-x^{2}.
\frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{-3x}{3\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is 3\left(x-2\right)\left(x+2\right). Multiply \frac{x+1}{3\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{x}{\left(x-2\right)\left(-x-2\right)} times \frac{-3}{-3}.
\frac{\left(x+1\right)\left(x-2\right)-3x}{3\left(x-2\right)\left(x+2\right)}
Since \frac{\left(x+1\right)\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)} and \frac{-3x}{3\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-2x+x-2-3x}{3\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(x+1\right)\left(x-2\right)-3x.
\frac{x^{2}-4x-2}{3\left(x-2\right)\left(x+2\right)}
Combine like terms in x^{2}-2x+x-2-3x.
\frac{x^{2}-4x-2}{3x^{2}-12}
Expand 3\left(x-2\right)\left(x+2\right).