Evaluate
\frac{82+51x-7x^{2}}{6\left(x^{2}-16\right)}
Expand
-\frac{7x^{2}-51x-82}{6\left(x^{2}-16\right)}
Graph
Share
Copied to clipboard
\frac{x+1}{2x-8}-\frac{5x+2}{3x+12}+\frac{18}{2x^{2}-32}
Express \frac{5x+2}{3x+12}\times 1 as a single fraction.
\frac{x+1}{2\left(x-4\right)}-\frac{5x+2}{3\left(x+4\right)}+\frac{18}{2x^{2}-32}
Factor 2x-8. Factor 3x+12.
\frac{\left(x+1\right)\times 3\left(x+4\right)}{6\left(x-4\right)\left(x+4\right)}-\frac{\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 3\left(x+4\right) is 6\left(x-4\right)\left(x+4\right). Multiply \frac{x+1}{2\left(x-4\right)} times \frac{3\left(x+4\right)}{3\left(x+4\right)}. Multiply \frac{5x+2}{3\left(x+4\right)} times \frac{2\left(x-4\right)}{2\left(x-4\right)}.
\frac{\left(x+1\right)\times 3\left(x+4\right)-\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Since \frac{\left(x+1\right)\times 3\left(x+4\right)}{6\left(x-4\right)\left(x+4\right)} and \frac{\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+12x+3x+12-10x^{2}+40x-4x+16}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Do the multiplications in \left(x+1\right)\times 3\left(x+4\right)-\left(5x+2\right)\times 2\left(x-4\right).
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Combine like terms in 3x^{2}+12x+3x+12-10x^{2}+40x-4x+16.
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2\left(x-4\right)\left(x+4\right)}
Factor 2x^{2}-32.
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18\times 3}{6\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x-4\right)\left(x+4\right) and 2\left(x-4\right)\left(x+4\right) is 6\left(x-4\right)\left(x+4\right). Multiply \frac{18}{2\left(x-4\right)\left(x+4\right)} times \frac{3}{3}.
\frac{-7x^{2}+51x+28+18\times 3}{6\left(x-4\right)\left(x+4\right)}
Since \frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)} and \frac{18\times 3}{6\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{-7x^{2}+51x+28+54}{6\left(x-4\right)\left(x+4\right)}
Do the multiplications in -7x^{2}+51x+28+18\times 3.
\frac{-7x^{2}+51x+82}{6\left(x-4\right)\left(x+4\right)}
Combine like terms in -7x^{2}+51x+28+54.
\frac{-7x^{2}+51x+82}{6x^{2}-96}
Expand 6\left(x-4\right)\left(x+4\right).
\frac{x+1}{2x-8}-\frac{5x+2}{3x+12}+\frac{18}{2x^{2}-32}
Express \frac{5x+2}{3x+12}\times 1 as a single fraction.
\frac{x+1}{2\left(x-4\right)}-\frac{5x+2}{3\left(x+4\right)}+\frac{18}{2x^{2}-32}
Factor 2x-8. Factor 3x+12.
\frac{\left(x+1\right)\times 3\left(x+4\right)}{6\left(x-4\right)\left(x+4\right)}-\frac{\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 3\left(x+4\right) is 6\left(x-4\right)\left(x+4\right). Multiply \frac{x+1}{2\left(x-4\right)} times \frac{3\left(x+4\right)}{3\left(x+4\right)}. Multiply \frac{5x+2}{3\left(x+4\right)} times \frac{2\left(x-4\right)}{2\left(x-4\right)}.
\frac{\left(x+1\right)\times 3\left(x+4\right)-\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Since \frac{\left(x+1\right)\times 3\left(x+4\right)}{6\left(x-4\right)\left(x+4\right)} and \frac{\left(5x+2\right)\times 2\left(x-4\right)}{6\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+12x+3x+12-10x^{2}+40x-4x+16}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Do the multiplications in \left(x+1\right)\times 3\left(x+4\right)-\left(5x+2\right)\times 2\left(x-4\right).
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2x^{2}-32}
Combine like terms in 3x^{2}+12x+3x+12-10x^{2}+40x-4x+16.
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18}{2\left(x-4\right)\left(x+4\right)}
Factor 2x^{2}-32.
\frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)}+\frac{18\times 3}{6\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6\left(x-4\right)\left(x+4\right) and 2\left(x-4\right)\left(x+4\right) is 6\left(x-4\right)\left(x+4\right). Multiply \frac{18}{2\left(x-4\right)\left(x+4\right)} times \frac{3}{3}.
\frac{-7x^{2}+51x+28+18\times 3}{6\left(x-4\right)\left(x+4\right)}
Since \frac{-7x^{2}+51x+28}{6\left(x-4\right)\left(x+4\right)} and \frac{18\times 3}{6\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{-7x^{2}+51x+28+54}{6\left(x-4\right)\left(x+4\right)}
Do the multiplications in -7x^{2}+51x+28+18\times 3.
\frac{-7x^{2}+51x+82}{6\left(x-4\right)\left(x+4\right)}
Combine like terms in -7x^{2}+51x+28+54.
\frac{-7x^{2}+51x+82}{6x^{2}-96}
Expand 6\left(x-4\right)\left(x+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}