Evaluate
-\frac{8x+w}{w-4}
Expand
\frac{8x+w}{4-w}
Share
Copied to clipboard
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Factor the expressions that are not already factored in \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Cancel out y-v in both numerator and denominator.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Factor the expressions that are not already factored in \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Extract the negative sign in 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Cancel out -w-4 in both numerator and denominator.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Multiply \frac{8x+w}{y+v} times \frac{-\left(y+v\right)}{w-4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(8x+w\right)}{w-4}
Cancel out y+v in both numerator and denominator.
\frac{-8x-w}{w-4}
To find the opposite of 8x+w, find the opposite of each term.
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Factor the expressions that are not already factored in \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Cancel out y-v in both numerator and denominator.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Factor the expressions that are not already factored in \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Extract the negative sign in 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Cancel out -w-4 in both numerator and denominator.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Multiply \frac{8x+w}{y+v} times \frac{-\left(y+v\right)}{w-4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(8x+w\right)}{w-4}
Cancel out y+v in both numerator and denominator.
\frac{-8x-w}{w-4}
To find the opposite of 8x+w, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}