Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Factor the expressions that are not already factored in \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Cancel out y-v in both numerator and denominator.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Factor the expressions that are not already factored in \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Extract the negative sign in 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Cancel out -w-4 in both numerator and denominator.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Multiply \frac{8x+w}{y+v} times \frac{-\left(y+v\right)}{w-4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(8x+w\right)}{w-4}
Cancel out y+v in both numerator and denominator.
\frac{-8x-w}{w-4}
To find the opposite of 8x+w, find the opposite of each term.
\frac{\left(8x+w\right)\left(y-v\right)}{\left(y+v\right)\left(y-v\right)}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Factor the expressions that are not already factored in \frac{wy-wv+8xy-8xv}{y^{2}-v^{2}}.
\frac{8x+w}{y+v}\times \frac{4y+4v+wy+vw}{16-w^{2}}
Cancel out y-v in both numerator and denominator.
\frac{8x+w}{y+v}\times \frac{\left(w+4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Factor the expressions that are not already factored in \frac{4y+4v+wy+vw}{16-w^{2}}.
\frac{8x+w}{y+v}\times \frac{-\left(-w-4\right)\left(y+v\right)}{\left(w-4\right)\left(-w-4\right)}
Extract the negative sign in 4+w.
\frac{8x+w}{y+v}\times \frac{-\left(y+v\right)}{w-4}
Cancel out -w-4 in both numerator and denominator.
\frac{\left(8x+w\right)\left(-1\right)\left(y+v\right)}{\left(y+v\right)\left(w-4\right)}
Multiply \frac{8x+w}{y+v} times \frac{-\left(y+v\right)}{w-4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(8x+w\right)}{w-4}
Cancel out y+v in both numerator and denominator.
\frac{-8x-w}{w-4}
To find the opposite of 8x+w, find the opposite of each term.