Solve for H
\left\{\begin{matrix}H=-\frac{tw}{T-t}\text{, }&t\neq 0\text{ and }w\neq 0\text{ and }T\neq t\\H\neq 0\text{, }&t=T\text{ and }w=0\text{ and }T\neq 0\end{matrix}\right.
Solve for T
T=\frac{t\left(H-w\right)}{H}
H\neq 0\text{ and }t\neq 0
Share
Copied to clipboard
tw=Ht-HT
Variable H cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Ht, the least common multiple of H,t.
Ht-HT=tw
Swap sides so that all variable terms are on the left hand side.
\left(t-T\right)H=tw
Combine all terms containing H.
\frac{\left(t-T\right)H}{t-T}=\frac{tw}{t-T}
Divide both sides by t-T.
H=\frac{tw}{t-T}
Dividing by t-T undoes the multiplication by t-T.
H=\frac{tw}{t-T}\text{, }H\neq 0
Variable H cannot be equal to 0.
tw=Ht-HT
Multiply both sides of the equation by Ht, the least common multiple of H,t.
Ht-HT=tw
Swap sides so that all variable terms are on the left hand side.
-HT=tw-Ht
Subtract Ht from both sides.
\left(-H\right)T=tw-Ht
The equation is in standard form.
\frac{\left(-H\right)T}{-H}=\frac{t\left(w-H\right)}{-H}
Divide both sides by -H.
T=\frac{t\left(w-H\right)}{-H}
Dividing by -H undoes the multiplication by -H.
T=-\frac{tw}{H}+t
Divide t\left(w-H\right) by -H.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}