Solve for w
w = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Share
Copied to clipboard
2w-\left(2w-16\right)=-4\left(2w+3\right)
Variable w cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 4\left(w+1\right), the least common multiple of 2w+2,4w+4,w+1.
2w-2w+16=-4\left(2w+3\right)
To find the opposite of 2w-16, find the opposite of each term.
16=-4\left(2w+3\right)
Combine 2w and -2w to get 0.
16=-8w-12
Use the distributive property to multiply -4 by 2w+3.
-8w-12=16
Swap sides so that all variable terms are on the left hand side.
-8w=16+12
Add 12 to both sides.
-8w=28
Add 16 and 12 to get 28.
w=\frac{28}{-8}
Divide both sides by -8.
w=-\frac{7}{2}
Reduce the fraction \frac{28}{-8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}