Solve for A
\left\{\begin{matrix}A=\frac{v-u}{t}\text{, }&v\neq u\text{ and }t\neq 0\\A\neq 0\text{, }&t=0\text{ and }v=u\end{matrix}\right.
Solve for t
t=\frac{v-u}{A}
A\neq 0
Share
Copied to clipboard
v-u=tA
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A.
tA=v-u
Swap sides so that all variable terms are on the left hand side.
\frac{tA}{t}=\frac{v-u}{t}
Divide both sides by t.
A=\frac{v-u}{t}
Dividing by t undoes the multiplication by t.
A=\frac{v-u}{t}\text{, }A\neq 0
Variable A cannot be equal to 0.
v-u=tA
Multiply both sides of the equation by A.
tA=v-u
Swap sides so that all variable terms are on the left hand side.
At=v-u
The equation is in standard form.
\frac{At}{A}=\frac{v-u}{A}
Divide both sides by A.
t=\frac{v-u}{A}
Dividing by A undoes the multiplication by A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}