Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

20\left(\frac{v-10}{2}+\frac{v-8}{4}+\frac{v-10}{5}+\frac{v}{2}-10^{-3}\right)+20v=0
Multiply both sides of the equation by 20, the least common multiple of 2,4,5.
20\left(\frac{7}{10}\left(v-10\right)+\frac{v-8}{4}+\frac{v}{2}-10^{-3}\right)+20v=0
Combine \frac{v-10}{2} and \frac{v-10}{5} to get \frac{7}{10}\left(v-10\right).
20\left(\frac{7}{10}\left(v-10\right)+\frac{v-8}{4}+\frac{2v}{4}-10^{-3}\right)+20v=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{v}{2} times \frac{2}{2}.
20\left(\frac{7}{10}\left(v-10\right)+\frac{v-8+2v}{4}-10^{-3}\right)+20v=0
Since \frac{v-8}{4} and \frac{2v}{4} have the same denominator, add them by adding their numerators.
20\left(\frac{7}{10}\left(v-10\right)+\frac{3v-8}{4}-10^{-3}\right)+20v=0
Combine like terms in v-8+2v.
20\left(\frac{7}{10}\left(v-10\right)+\frac{3v-8}{4}-\frac{1}{1000}\right)+20v=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
20\left(\frac{7}{10}\left(v-10\right)+\frac{250\left(3v-8\right)}{1000}-\frac{1}{1000}\right)+20v=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 1000 is 1000. Multiply \frac{3v-8}{4} times \frac{250}{250}.
20\left(\frac{7}{10}\left(v-10\right)+\frac{250\left(3v-8\right)-1}{1000}\right)+20v=0
Since \frac{250\left(3v-8\right)}{1000} and \frac{1}{1000} have the same denominator, subtract them by subtracting their numerators.
20\left(\frac{7}{10}\left(v-10\right)+\frac{750v-2000-1}{1000}\right)+20v=0
Do the multiplications in 250\left(3v-8\right)-1.
20\left(\frac{7}{10}\left(v-10\right)+\frac{750v-2001}{1000}\right)+20v=0
Combine like terms in 750v-2000-1.
14v-140+20\times \frac{750v-2001}{1000}+20v=0
Use the distributive property to multiply 20 by \frac{7}{10}\left(v-10\right)+\frac{750v-2001}{1000}.
14v-140+\frac{750v-2001}{50}+20v=0
Cancel out 1000, the greatest common factor in 20 and 1000.
34v-140+\frac{750v-2001}{50}=0
Combine 14v and 20v to get 34v.
34v-140+15v-\frac{2001}{50}=0
Divide each term of 750v-2001 by 50 to get 15v-\frac{2001}{50}.
49v-140-\frac{2001}{50}=0
Combine 34v and 15v to get 49v.
49v-\frac{9001}{50}=0
Subtract \frac{2001}{50} from -140 to get -\frac{9001}{50}.
49v=\frac{9001}{50}
Add \frac{9001}{50} to both sides. Anything plus zero gives itself.
v=\frac{\frac{9001}{50}}{49}
Divide both sides by 49.
v=\frac{9001}{50\times 49}
Express \frac{\frac{9001}{50}}{49} as a single fraction.
v=\frac{9001}{2450}
Multiply 50 and 49 to get 2450.