Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

\frac{v\left(1+\sqrt{11}\right)}{\left(1-\sqrt{11}\right)\left(1+\sqrt{11}\right)}=v
Rationalize the denominator of \frac{v}{1-\sqrt{11}} by multiplying numerator and denominator by 1+\sqrt{11}.
\frac{v\left(1+\sqrt{11}\right)}{1^{2}-\left(\sqrt{11}\right)^{2}}=v
Consider \left(1-\sqrt{11}\right)\left(1+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{v\left(1+\sqrt{11}\right)}{1-11}=v
Square 1. Square \sqrt{11}.
\frac{v\left(1+\sqrt{11}\right)}{-10}=v
Subtract 11 from 1 to get -10.
\frac{v+v\sqrt{11}}{-10}=v
Use the distributive property to multiply v by 1+\sqrt{11}.
\frac{v+v\sqrt{11}}{-10}-v=0
Subtract v from both sides.
v+v\sqrt{11}+10v=0
Multiply both sides of the equation by -10.
\sqrt{11}v+v+10v=0
Reorder the terms.
\sqrt{11}v+11v=0
Combine v and 10v to get 11v.
\left(\sqrt{11}+11\right)v=0
Combine all terms containing v.
v=0
Divide 0 by \sqrt{11}+11.