Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

v^{2}-7v-18=6
Multiply both sides of the equation by 6.
v^{2}-7v-18-6=0
Subtract 6 from both sides.
v^{2}-7v-24=0
Subtract 6 from -18 to get -24.
v=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-24\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-7\right)±\sqrt{49-4\left(-24\right)}}{2}
Square -7.
v=\frac{-\left(-7\right)±\sqrt{49+96}}{2}
Multiply -4 times -24.
v=\frac{-\left(-7\right)±\sqrt{145}}{2}
Add 49 to 96.
v=\frac{7±\sqrt{145}}{2}
The opposite of -7 is 7.
v=\frac{\sqrt{145}+7}{2}
Now solve the equation v=\frac{7±\sqrt{145}}{2} when ± is plus. Add 7 to \sqrt{145}.
v=\frac{7-\sqrt{145}}{2}
Now solve the equation v=\frac{7±\sqrt{145}}{2} when ± is minus. Subtract \sqrt{145} from 7.
v=\frac{\sqrt{145}+7}{2} v=\frac{7-\sqrt{145}}{2}
The equation is now solved.
v^{2}-7v-18=6
Multiply both sides of the equation by 6.
v^{2}-7v=6+18
Add 18 to both sides.
v^{2}-7v=24
Add 6 and 18 to get 24.
v^{2}-7v+\left(-\frac{7}{2}\right)^{2}=24+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-7v+\frac{49}{4}=24+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}-7v+\frac{49}{4}=\frac{145}{4}
Add 24 to \frac{49}{4}.
\left(v-\frac{7}{2}\right)^{2}=\frac{145}{4}
Factor v^{2}-7v+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{7}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
v-\frac{7}{2}=\frac{\sqrt{145}}{2} v-\frac{7}{2}=-\frac{\sqrt{145}}{2}
Simplify.
v=\frac{\sqrt{145}+7}{2} v=\frac{7-\sqrt{145}}{2}
Add \frac{7}{2} to both sides of the equation.