Solve for t
t=-5
Share
Copied to clipboard
2\left(t+7\right)=6-\left(3t+17\right)
Multiply both sides of the equation by 6, the least common multiple of 3,6.
2t+14=6-\left(3t+17\right)
Use the distributive property to multiply 2 by t+7.
2t+14=6-3t-17
To find the opposite of 3t+17, find the opposite of each term.
2t+14=-11-3t
Subtract 17 from 6 to get -11.
2t+14+3t=-11
Add 3t to both sides.
5t+14=-11
Combine 2t and 3t to get 5t.
5t=-11-14
Subtract 14 from both sides.
5t=-25
Subtract 14 from -11 to get -25.
t=\frac{-25}{5}
Divide both sides by 5.
t=-5
Divide -25 by 5 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}