Solve for s
s=2
Share
Copied to clipboard
\left(s+5\right)\left(s-7\right)=\left(s+3\right)\left(s-9\right)
Variable s cannot be equal to any of the values -5,-3 since division by zero is not defined. Multiply both sides of the equation by \left(s+3\right)\left(s+5\right), the least common multiple of s+3,s+5.
s^{2}-2s-35=\left(s+3\right)\left(s-9\right)
Use the distributive property to multiply s+5 by s-7 and combine like terms.
s^{2}-2s-35=s^{2}-6s-27
Use the distributive property to multiply s+3 by s-9 and combine like terms.
s^{2}-2s-35-s^{2}=-6s-27
Subtract s^{2} from both sides.
-2s-35=-6s-27
Combine s^{2} and -s^{2} to get 0.
-2s-35+6s=-27
Add 6s to both sides.
4s-35=-27
Combine -2s and 6s to get 4s.
4s=-27+35
Add 35 to both sides.
4s=8
Add -27 and 35 to get 8.
s=\frac{8}{4}
Divide both sides by 4.
s=2
Divide 8 by 4 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}