Solve for x
x=-\frac{3-2s^{2}}{4s-3}
s\neq \frac{3}{4}
Solve for s
s=-\frac{\sqrt{4x^{2}-6x+6}}{2}+x
s=\frac{\sqrt{4x^{2}-6x+6}}{2}+x
Graph
Share
Copied to clipboard
2s\left(2x-s\right)=3\left(x-1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4xs-2s^{2}=3\left(x-1\right)
Use the distributive property to multiply 2s by 2x-s.
4xs-2s^{2}=3x-3
Use the distributive property to multiply 3 by x-1.
4xs-2s^{2}-3x=-3
Subtract 3x from both sides.
4xs-3x=-3+2s^{2}
Add 2s^{2} to both sides.
\left(4s-3\right)x=-3+2s^{2}
Combine all terms containing x.
\left(4s-3\right)x=2s^{2}-3
The equation is in standard form.
\frac{\left(4s-3\right)x}{4s-3}=\frac{2s^{2}-3}{4s-3}
Divide both sides by 4s-3.
x=\frac{2s^{2}-3}{4s-3}
Dividing by 4s-3 undoes the multiplication by 4s-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}