Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. s
Tick mark Image

Similar Problems from Web Search

Share

\frac{ss}{s\left(s^{2}+1\right)}+\frac{s^{2}+1}{s\left(s^{2}+1\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s^{2}+1 and s is s\left(s^{2}+1\right). Multiply \frac{s}{s^{2}+1} times \frac{s}{s}. Multiply \frac{1}{s} times \frac{s^{2}+1}{s^{2}+1}.
\frac{ss+s^{2}+1}{s\left(s^{2}+1\right)}+1
Since \frac{ss}{s\left(s^{2}+1\right)} and \frac{s^{2}+1}{s\left(s^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{s^{2}+s^{2}+1}{s\left(s^{2}+1\right)}+1
Do the multiplications in ss+s^{2}+1.
\frac{2s^{2}+1}{s\left(s^{2}+1\right)}+1
Combine like terms in s^{2}+s^{2}+1.
\frac{2s^{2}+1}{s\left(s^{2}+1\right)}+\frac{s\left(s^{2}+1\right)}{s\left(s^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{s\left(s^{2}+1\right)}{s\left(s^{2}+1\right)}.
\frac{2s^{2}+1+s\left(s^{2}+1\right)}{s\left(s^{2}+1\right)}
Since \frac{2s^{2}+1}{s\left(s^{2}+1\right)} and \frac{s\left(s^{2}+1\right)}{s\left(s^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2s^{2}+1+s^{3}+s}{s\left(s^{2}+1\right)}
Do the multiplications in 2s^{2}+1+s\left(s^{2}+1\right).
\frac{2s^{2}+1+s^{3}+s}{s^{3}+s}
Expand s\left(s^{2}+1\right).