Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{s\left(s^{2}+1\right)}{\left(2s+1\right)\left(s^{2}+1\right)}+\frac{s\left(2s+1\right)}{\left(2s+1\right)\left(s^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2s+1 and s^{2}+1 is \left(2s+1\right)\left(s^{2}+1\right). Multiply \frac{s}{2s+1} times \frac{s^{2}+1}{s^{2}+1}. Multiply \frac{s}{s^{2}+1} times \frac{2s+1}{2s+1}.
\frac{s\left(s^{2}+1\right)+s\left(2s+1\right)}{\left(2s+1\right)\left(s^{2}+1\right)}
Since \frac{s\left(s^{2}+1\right)}{\left(2s+1\right)\left(s^{2}+1\right)} and \frac{s\left(2s+1\right)}{\left(2s+1\right)\left(s^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{s^{3}+s+2s^{2}+s}{\left(2s+1\right)\left(s^{2}+1\right)}
Do the multiplications in s\left(s^{2}+1\right)+s\left(2s+1\right).
\frac{s^{3}+2s+2s^{2}}{\left(2s+1\right)\left(s^{2}+1\right)}
Combine like terms in s^{3}+s+2s^{2}+s.
\frac{s^{3}+2s+2s^{2}}{2s^{3}+s^{2}+2s+1}
Expand \left(2s+1\right)\left(s^{2}+1\right).