Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(s^{2}-25\right)\left(27s+135\right)}{\left(9s+45\right)\left(3s^{2}-30s+75\right)}
Divide \frac{s^{2}-25}{9s+45} by \frac{3s^{2}-30s+75}{27s+135} by multiplying \frac{s^{2}-25}{9s+45} by the reciprocal of \frac{3s^{2}-30s+75}{27s+135}.
\frac{27\left(s-5\right)\left(s+5\right)^{2}}{3\times 9\left(s+5\right)\left(s-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+5}{s-5}
Cancel out 3\times 9\left(s-5\right)\left(s+5\right) in both numerator and denominator.
\frac{\left(s^{2}-25\right)\left(27s+135\right)}{\left(9s+45\right)\left(3s^{2}-30s+75\right)}
Divide \frac{s^{2}-25}{9s+45} by \frac{3s^{2}-30s+75}{27s+135} by multiplying \frac{s^{2}-25}{9s+45} by the reciprocal of \frac{3s^{2}-30s+75}{27s+135}.
\frac{27\left(s-5\right)\left(s+5\right)^{2}}{3\times 9\left(s+5\right)\left(s-5\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+5}{s-5}
Cancel out 3\times 9\left(s-5\right)\left(s+5\right) in both numerator and denominator.