Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(s^{2}-16\right)\left(27s+108\right)}{\left(9s+36\right)\left(3s^{2}-24s+48\right)}
Divide \frac{s^{2}-16}{9s+36} by \frac{3s^{2}-24s+48}{27s+108} by multiplying \frac{s^{2}-16}{9s+36} by the reciprocal of \frac{3s^{2}-24s+48}{27s+108}.
\frac{27\left(s-4\right)\left(s+4\right)^{2}}{3\times 9\left(s+4\right)\left(s-4\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+4}{s-4}
Cancel out 3\times 9\left(s-4\right)\left(s+4\right) in both numerator and denominator.
\frac{\left(s^{2}-16\right)\left(27s+108\right)}{\left(9s+36\right)\left(3s^{2}-24s+48\right)}
Divide \frac{s^{2}-16}{9s+36} by \frac{3s^{2}-24s+48}{27s+108} by multiplying \frac{s^{2}-16}{9s+36} by the reciprocal of \frac{3s^{2}-24s+48}{27s+108}.
\frac{27\left(s-4\right)\left(s+4\right)^{2}}{3\times 9\left(s+4\right)\left(s-4\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+4}{s-4}
Cancel out 3\times 9\left(s-4\right)\left(s+4\right) in both numerator and denominator.