Solve for r
r=-\frac{\left(2-y\right)\left(3y+1\right)}{3y-4}
y\neq 2\text{ and }y\neq \frac{4}{3}
Solve for y
\left\{\begin{matrix}\\y=-\frac{\sqrt{9r^{2}-18r+49}}{6}+\frac{r}{2}+\frac{5}{6}\text{, }&\text{unconditionally}\\y=\frac{\sqrt{9r^{2}-18r+49}}{6}+\frac{r}{2}+\frac{5}{6}\text{, }&r\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(3y-4\right)r=\left(y-2\right)\left(3y+1\right)
Multiply both sides of the equation by \left(y-2\right)\left(3y-4\right), the least common multiple of y-2,3y-4.
3yr-4r=\left(y-2\right)\left(3y+1\right)
Use the distributive property to multiply 3y-4 by r.
3yr-4r=3y^{2}-5y-2
Use the distributive property to multiply y-2 by 3y+1 and combine like terms.
\left(3y-4\right)r=3y^{2}-5y-2
Combine all terms containing r.
\frac{\left(3y-4\right)r}{3y-4}=\frac{\left(y-2\right)\left(3y+1\right)}{3y-4}
Divide both sides by 3y-4.
r=\frac{\left(y-2\right)\left(3y+1\right)}{3y-4}
Dividing by 3y-4 undoes the multiplication by 3y-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}