Solve for k
k=\frac{p}{8m}-\frac{5}{2}
m\neq 0
Solve for m
\left\{\begin{matrix}m=\frac{p}{4\left(2k+5\right)}\text{, }&p\neq 0\text{ and }k\neq -\frac{5}{2}\\m\neq 0\text{, }&k=-\frac{5}{2}\text{ and }p=0\end{matrix}\right.
Share
Copied to clipboard
p-2k\times 4m=20m
Multiply both sides of the equation by 4m.
p-8km=20m
Multiply -2 and 4 to get -8.
-8km=20m-p
Subtract p from both sides.
\left(-8m\right)k=20m-p
The equation is in standard form.
\frac{\left(-8m\right)k}{-8m}=\frac{20m-p}{-8m}
Divide both sides by -8m.
k=\frac{20m-p}{-8m}
Dividing by -8m undoes the multiplication by -8m.
k=\frac{p}{8m}-\frac{5}{2}
Divide 20m-p by -8m.
p-2k\times 4m=20m
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4m.
p-8km=20m
Multiply -2 and 4 to get -8.
p-8km-20m=0
Subtract 20m from both sides.
-8km-20m=-p
Subtract p from both sides. Anything subtracted from zero gives its negation.
\left(-8k-20\right)m=-p
Combine all terms containing m.
\frac{\left(-8k-20\right)m}{-8k-20}=-\frac{p}{-8k-20}
Divide both sides by -8k-20.
m=-\frac{p}{-8k-20}
Dividing by -8k-20 undoes the multiplication by -8k-20.
m=\frac{p}{4\left(2k+5\right)}
Divide -p by -8k-20.
m=\frac{p}{4\left(2k+5\right)}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}