Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

3\left(p^{2}-2p-3\right)=4\left(p-5\right)
Variable p cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 3\left(p-5\right), the least common multiple of p-5,3.
3p^{2}-6p-9=4\left(p-5\right)
Use the distributive property to multiply 3 by p^{2}-2p-3.
3p^{2}-6p-9=4p-20
Use the distributive property to multiply 4 by p-5.
3p^{2}-6p-9-4p=-20
Subtract 4p from both sides.
3p^{2}-10p-9=-20
Combine -6p and -4p to get -10p.
3p^{2}-10p-9+20=0
Add 20 to both sides.
3p^{2}-10p+11=0
Add -9 and 20 to get 11.
p=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 11}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 11}}{2\times 3}
Square -10.
p=\frac{-\left(-10\right)±\sqrt{100-12\times 11}}{2\times 3}
Multiply -4 times 3.
p=\frac{-\left(-10\right)±\sqrt{100-132}}{2\times 3}
Multiply -12 times 11.
p=\frac{-\left(-10\right)±\sqrt{-32}}{2\times 3}
Add 100 to -132.
p=\frac{-\left(-10\right)±4\sqrt{2}i}{2\times 3}
Take the square root of -32.
p=\frac{10±4\sqrt{2}i}{2\times 3}
The opposite of -10 is 10.
p=\frac{10±4\sqrt{2}i}{6}
Multiply 2 times 3.
p=\frac{10+4\sqrt{2}i}{6}
Now solve the equation p=\frac{10±4\sqrt{2}i}{6} when ± is plus. Add 10 to 4i\sqrt{2}.
p=\frac{5+2\sqrt{2}i}{3}
Divide 10+4i\sqrt{2} by 6.
p=\frac{-4\sqrt{2}i+10}{6}
Now solve the equation p=\frac{10±4\sqrt{2}i}{6} when ± is minus. Subtract 4i\sqrt{2} from 10.
p=\frac{-2\sqrt{2}i+5}{3}
Divide 10-4i\sqrt{2} by 6.
p=\frac{5+2\sqrt{2}i}{3} p=\frac{-2\sqrt{2}i+5}{3}
The equation is now solved.
3\left(p^{2}-2p-3\right)=4\left(p-5\right)
Variable p cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 3\left(p-5\right), the least common multiple of p-5,3.
3p^{2}-6p-9=4\left(p-5\right)
Use the distributive property to multiply 3 by p^{2}-2p-3.
3p^{2}-6p-9=4p-20
Use the distributive property to multiply 4 by p-5.
3p^{2}-6p-9-4p=-20
Subtract 4p from both sides.
3p^{2}-10p-9=-20
Combine -6p and -4p to get -10p.
3p^{2}-10p=-20+9
Add 9 to both sides.
3p^{2}-10p=-11
Add -20 and 9 to get -11.
\frac{3p^{2}-10p}{3}=-\frac{11}{3}
Divide both sides by 3.
p^{2}-\frac{10}{3}p=-\frac{11}{3}
Dividing by 3 undoes the multiplication by 3.
p^{2}-\frac{10}{3}p+\left(-\frac{5}{3}\right)^{2}=-\frac{11}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{10}{3}p+\frac{25}{9}=-\frac{11}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
p^{2}-\frac{10}{3}p+\frac{25}{9}=-\frac{8}{9}
Add -\frac{11}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{5}{3}\right)^{2}=-\frac{8}{9}
Factor p^{2}-\frac{10}{3}p+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{8}{9}}
Take the square root of both sides of the equation.
p-\frac{5}{3}=\frac{2\sqrt{2}i}{3} p-\frac{5}{3}=-\frac{2\sqrt{2}i}{3}
Simplify.
p=\frac{5+2\sqrt{2}i}{3} p=\frac{-2\sqrt{2}i+5}{3}
Add \frac{5}{3} to both sides of the equation.