\frac { n } { 21 } x - ( 15 x - 2 ) = 4 ( x - 3
Solve for n
n=399-\frac{294}{x}
x\neq 0
Solve for x
x=-\frac{294}{n-399}
n\neq 399
Graph
Share
Copied to clipboard
nx-21\left(15x-2\right)=84\left(x-3\right)
Multiply both sides of the equation by 21.
nx-315x+42=84\left(x-3\right)
Use the distributive property to multiply -21 by 15x-2.
nx-315x+42=84x-252
Use the distributive property to multiply 84 by x-3.
nx+42=84x-252+315x
Add 315x to both sides.
nx+42=399x-252
Combine 84x and 315x to get 399x.
nx=399x-252-42
Subtract 42 from both sides.
nx=399x-294
Subtract 42 from -252 to get -294.
xn=399x-294
The equation is in standard form.
\frac{xn}{x}=\frac{399x-294}{x}
Divide both sides by x.
n=\frac{399x-294}{x}
Dividing by x undoes the multiplication by x.
n=399-\frac{294}{x}
Divide 399x-294 by x.
nx-21\left(15x-2\right)=84\left(x-3\right)
Multiply both sides of the equation by 21.
nx-315x+42=84\left(x-3\right)
Use the distributive property to multiply -21 by 15x-2.
nx-315x+42=84x-252
Use the distributive property to multiply 84 by x-3.
nx-315x+42-84x=-252
Subtract 84x from both sides.
nx-399x+42=-252
Combine -315x and -84x to get -399x.
nx-399x=-252-42
Subtract 42 from both sides.
nx-399x=-294
Subtract 42 from -252 to get -294.
\left(n-399\right)x=-294
Combine all terms containing x.
\frac{\left(n-399\right)x}{n-399}=-\frac{294}{n-399}
Divide both sides by n-399.
x=-\frac{294}{n-399}
Dividing by n-399 undoes the multiplication by n-399.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}