Evaluate
\frac{m^{2}-13m+3n^{2}+9}{3\left(m^{2}-1\right)}
m\neq -6\text{ and }|m|\neq 1
Expand
\frac{m^{2}-13m+3n^{2}+9}{3\left(m^{2}-1\right)}
m\neq -6\text{ and }|m|\neq 1
Share
Copied to clipboard
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
Factor m^{2}-1.
\frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)}+\frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and 3\left(m+1\right) is 3\left(m-1\right)\left(m+1\right). Multiply \frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)} times \frac{3}{3}. Multiply \frac{m}{3\left(m+1\right)} times \frac{m-1}{m-1}.
\frac{3\left(n^{2}-4m+3\right)+m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
Since \frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)} and \frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3n^{2}-12m+9+m^{2}-m}{3\left(m-1\right)\left(m+1\right)}
Do the multiplications in 3\left(n^{2}-4m+3\right)+m\left(m-1\right).
\frac{3n^{2}-13m+9+m^{2}}{3\left(m-1\right)\left(m+1\right)}
Combine like terms in 3n^{2}-12m+9+m^{2}-m.
\frac{3n^{2}-13m+9+m^{2}}{3m^{2}-3}
Expand 3\left(m-1\right)\left(m+1\right).
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
Factor m^{2}-1.
\frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)}+\frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and 3\left(m+1\right) is 3\left(m-1\right)\left(m+1\right). Multiply \frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)} times \frac{3}{3}. Multiply \frac{m}{3\left(m+1\right)} times \frac{m-1}{m-1}.
\frac{3\left(n^{2}-4m+3\right)+m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
Since \frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)} and \frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3n^{2}-12m+9+m^{2}-m}{3\left(m-1\right)\left(m+1\right)}
Do the multiplications in 3\left(n^{2}-4m+3\right)+m\left(m-1\right).
\frac{3n^{2}-13m+9+m^{2}}{3\left(m-1\right)\left(m+1\right)}
Combine like terms in 3n^{2}-12m+9+m^{2}-m.
\frac{3n^{2}-13m+9+m^{2}}{3m^{2}-3}
Expand 3\left(m-1\right)\left(m+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}