Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
Factor m^{2}-1.
\frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)}+\frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and 3\left(m+1\right) is 3\left(m-1\right)\left(m+1\right). Multiply \frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)} times \frac{3}{3}. Multiply \frac{m}{3\left(m+1\right)} times \frac{m-1}{m-1}.
\frac{3\left(n^{2}-4m+3\right)+m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
Since \frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)} and \frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3n^{2}-12m+9+m^{2}-m}{3\left(m-1\right)\left(m+1\right)}
Do the multiplications in 3\left(n^{2}-4m+3\right)+m\left(m-1\right).
\frac{3n^{2}-13m+9+m^{2}}{3\left(m-1\right)\left(m+1\right)}
Combine like terms in 3n^{2}-12m+9+m^{2}-m.
\frac{3n^{2}-13m+9+m^{2}}{3m^{2}-3}
Expand 3\left(m-1\right)\left(m+1\right).
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m\left(m+6\right)}{3\left(m+1\right)\left(m+6\right)}
Factor the expressions that are not already factored in \frac{m^{2}+6m}{3m^{2}+21m+18}.
\frac{n^{2}-4m+3}{m^{2}-1}+\frac{m}{3\left(m+1\right)}
Cancel out m+6 in both numerator and denominator.
\frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)}+\frac{m}{3\left(m+1\right)}
Factor m^{2}-1.
\frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)}+\frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(m-1\right)\left(m+1\right) and 3\left(m+1\right) is 3\left(m-1\right)\left(m+1\right). Multiply \frac{n^{2}-4m+3}{\left(m-1\right)\left(m+1\right)} times \frac{3}{3}. Multiply \frac{m}{3\left(m+1\right)} times \frac{m-1}{m-1}.
\frac{3\left(n^{2}-4m+3\right)+m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)}
Since \frac{3\left(n^{2}-4m+3\right)}{3\left(m-1\right)\left(m+1\right)} and \frac{m\left(m-1\right)}{3\left(m-1\right)\left(m+1\right)} have the same denominator, add them by adding their numerators.
\frac{3n^{2}-12m+9+m^{2}-m}{3\left(m-1\right)\left(m+1\right)}
Do the multiplications in 3\left(n^{2}-4m+3\right)+m\left(m-1\right).
\frac{3n^{2}-13m+9+m^{2}}{3\left(m-1\right)\left(m+1\right)}
Combine like terms in 3n^{2}-12m+9+m^{2}-m.
\frac{3n^{2}-13m+9+m^{2}}{3m^{2}-3}
Expand 3\left(m-1\right)\left(m+1\right).