Evaluate
\frac{1}{4}+\frac{1}{2n}
Expand
\frac{1}{4}+\frac{1}{2n}
Share
Copied to clipboard
\frac{n+4}{4\left(n+2\right)}+\frac{1}{n\left(n+2\right)}
Factor 4n+8. Factor n^{2}+2n.
\frac{\left(n+4\right)n}{4n\left(n+2\right)}+\frac{4}{4n\left(n+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(n+2\right) and n\left(n+2\right) is 4n\left(n+2\right). Multiply \frac{n+4}{4\left(n+2\right)} times \frac{n}{n}. Multiply \frac{1}{n\left(n+2\right)} times \frac{4}{4}.
\frac{\left(n+4\right)n+4}{4n\left(n+2\right)}
Since \frac{\left(n+4\right)n}{4n\left(n+2\right)} and \frac{4}{4n\left(n+2\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n+4}{4n\left(n+2\right)}
Do the multiplications in \left(n+4\right)n+4.
\frac{\left(n+2\right)^{2}}{4n\left(n+2\right)}
Factor the expressions that are not already factored in \frac{n^{2}+4n+4}{4n\left(n+2\right)}.
\frac{n+2}{4n}
Cancel out n+2 in both numerator and denominator.
\frac{n+4}{4\left(n+2\right)}+\frac{1}{n\left(n+2\right)}
Factor 4n+8. Factor n^{2}+2n.
\frac{\left(n+4\right)n}{4n\left(n+2\right)}+\frac{4}{4n\left(n+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(n+2\right) and n\left(n+2\right) is 4n\left(n+2\right). Multiply \frac{n+4}{4\left(n+2\right)} times \frac{n}{n}. Multiply \frac{1}{n\left(n+2\right)} times \frac{4}{4}.
\frac{\left(n+4\right)n+4}{4n\left(n+2\right)}
Since \frac{\left(n+4\right)n}{4n\left(n+2\right)} and \frac{4}{4n\left(n+2\right)} have the same denominator, add them by adding their numerators.
\frac{n^{2}+4n+4}{4n\left(n+2\right)}
Do the multiplications in \left(n+4\right)n+4.
\frac{\left(n+2\right)^{2}}{4n\left(n+2\right)}
Factor the expressions that are not already factored in \frac{n^{2}+4n+4}{4n\left(n+2\right)}.
\frac{n+2}{4n}
Cancel out n+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}