Solve for n
n=-1
Share
Copied to clipboard
n+2+\left(n-4\right)n=n\left(n-5\right)
Variable n cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by \left(n-4\right)n^{2}, the least common multiple of n^{3}-4n^{2},n,n^{2}-4n.
n+2+n^{2}-4n=n\left(n-5\right)
Use the distributive property to multiply n-4 by n.
-3n+2+n^{2}=n\left(n-5\right)
Combine n and -4n to get -3n.
-3n+2+n^{2}=n^{2}-5n
Use the distributive property to multiply n by n-5.
-3n+2+n^{2}-n^{2}=-5n
Subtract n^{2} from both sides.
-3n+2=-5n
Combine n^{2} and -n^{2} to get 0.
-3n+2+5n=0
Add 5n to both sides.
2n+2=0
Combine -3n and 5n to get 2n.
2n=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
n=\frac{-2}{2}
Divide both sides by 2.
n=-1
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}