Solve for n
n = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\left(n-3\right)\left(n+1\right)=nn
Variable n cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by n\left(n-3\right), the least common multiple of n,n-3.
\left(n-3\right)\left(n+1\right)=n^{2}
Multiply n and n to get n^{2}.
n^{2}-2n-3=n^{2}
Use the distributive property to multiply n-3 by n+1 and combine like terms.
n^{2}-2n-3-n^{2}=0
Subtract n^{2} from both sides.
-2n-3=0
Combine n^{2} and -n^{2} to get 0.
-2n=3
Add 3 to both sides. Anything plus zero gives itself.
n=\frac{3}{-2}
Divide both sides by -2.
n=-\frac{3}{2}
Fraction \frac{3}{-2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}