Evaluate
-\frac{m\left(m+p\right)}{mp-8m-8p}
Expand
-\frac{m^{2}+mp}{mp-8m-8p}
Share
Copied to clipboard
\frac{\left(mp+p^{2}\right)\left(m^{2}-mp\right)}{\left(mp-8p-8m\right)\left(p^{2}-mp\right)}
Divide \frac{mp+p^{2}}{mp-8p-8m} by \frac{p^{2}-mp}{m^{2}-mp} by multiplying \frac{mp+p^{2}}{mp-8p-8m} by the reciprocal of \frac{p^{2}-mp}{m^{2}-mp}.
\frac{mp\left(m+p\right)\left(m-p\right)}{p\left(-m+p\right)\left(mp-8m-8p\right)}
Factor the expressions that are not already factored.
\frac{-mp\left(m+p\right)\left(-m+p\right)}{p\left(-m+p\right)\left(mp-8m-8p\right)}
Extract the negative sign in m-p.
\frac{-m\left(m+p\right)}{mp-8m-8p}
Cancel out p\left(-m+p\right) in both numerator and denominator.
\frac{-m^{2}-mp}{mp-8m-8p}
Expand the expression.
\frac{\left(mp+p^{2}\right)\left(m^{2}-mp\right)}{\left(mp-8p-8m\right)\left(p^{2}-mp\right)}
Divide \frac{mp+p^{2}}{mp-8p-8m} by \frac{p^{2}-mp}{m^{2}-mp} by multiplying \frac{mp+p^{2}}{mp-8p-8m} by the reciprocal of \frac{p^{2}-mp}{m^{2}-mp}.
\frac{mp\left(m+p\right)\left(m-p\right)}{p\left(-m+p\right)\left(mp-8m-8p\right)}
Factor the expressions that are not already factored.
\frac{-mp\left(m+p\right)\left(-m+p\right)}{p\left(-m+p\right)\left(mp-8m-8p\right)}
Extract the negative sign in m-p.
\frac{-m\left(m+p\right)}{mp-8m-8p}
Cancel out p\left(-m+p\right) in both numerator and denominator.
\frac{-m^{2}-mp}{mp-8m-8p}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}