Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{m\left(2m-n\right)}{\left(m+n\right)\left(2m-n\right)}-\frac{m\left(m+n\right)}{\left(m+n\right)\left(2m-n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m+n and 2m-n is \left(m+n\right)\left(2m-n\right). Multiply \frac{m}{m+n} times \frac{2m-n}{2m-n}. Multiply \frac{m}{2m-n} times \frac{m+n}{m+n}.
\frac{m\left(2m-n\right)-m\left(m+n\right)}{\left(m+n\right)\left(2m-n\right)}
Since \frac{m\left(2m-n\right)}{\left(m+n\right)\left(2m-n\right)} and \frac{m\left(m+n\right)}{\left(m+n\right)\left(2m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2m^{2}-mn-m^{2}-mn}{\left(m+n\right)\left(2m-n\right)}
Do the multiplications in m\left(2m-n\right)-m\left(m+n\right).
\frac{m^{2}-2mn}{\left(m+n\right)\left(2m-n\right)}
Combine like terms in 2m^{2}-mn-m^{2}-mn.
\frac{m^{2}-2mn}{2m^{2}+mn-n^{2}}
Expand \left(m+n\right)\left(2m-n\right).