Solve for m
m=-1
Share
Copied to clipboard
\frac{2m}{6}+\frac{3m-1}{6}=m
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{m}{3} times \frac{2}{2}.
\frac{2m+3m-1}{6}=m
Since \frac{2m}{6} and \frac{3m-1}{6} have the same denominator, add them by adding their numerators.
\frac{5m-1}{6}=m
Combine like terms in 2m+3m-1.
\frac{5}{6}m-\frac{1}{6}=m
Divide each term of 5m-1 by 6 to get \frac{5}{6}m-\frac{1}{6}.
\frac{5}{6}m-\frac{1}{6}-m=0
Subtract m from both sides.
-\frac{1}{6}m-\frac{1}{6}=0
Combine \frac{5}{6}m and -m to get -\frac{1}{6}m.
-\frac{1}{6}m=\frac{1}{6}
Add \frac{1}{6} to both sides. Anything plus zero gives itself.
m=\frac{1}{6}\left(-6\right)
Multiply both sides by -6, the reciprocal of -\frac{1}{6}.
m=\frac{-6}{6}
Multiply \frac{1}{6} and -6 to get \frac{-6}{6}.
m=-1
Divide -6 by 6 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}