Solve for h
h = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
m\neq 0
Solve for m
m\neq 0
m\neq 0\text{ and }h=\frac{4}{3}
Share
Copied to clipboard
\frac{mh}{m}=\frac{4}{3}
Variable h cannot be equal to 0 since division by zero is not defined. Divide m by \frac{m}{h} by multiplying m by the reciprocal of \frac{m}{h}.
h=\frac{4}{3}
Cancel out m in both numerator and denominator.
\frac{mh}{m}=\frac{4}{3}
Divide m by \frac{m}{h} by multiplying m by the reciprocal of \frac{m}{h}.
3mh=4m
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3m, the least common multiple of m,3.
3hm=4m
Reorder the terms.
3hm-4m=0
Subtract 4m from both sides.
\left(3h-4\right)m=0
Combine all terms containing m.
m=0
Divide 0 by 3h-4.
m\in \emptyset
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}