Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(m+2\right)^{2}}{2\left(m+2\right)}\times \frac{4m^{2}-2m}{m^{2}-4}\times \frac{m-2}{4m-2}
Factor the expressions that are not already factored in \frac{m^{2}+4m+4}{2m+4}.
\frac{m+2}{2}\times \frac{4m^{2}-2m}{m^{2}-4}\times \frac{m-2}{4m-2}
Cancel out m+2 in both numerator and denominator.
\frac{\left(m+2\right)\left(4m^{2}-2m\right)}{2\left(m^{2}-4\right)}\times \frac{m-2}{4m-2}
Multiply \frac{m+2}{2} times \frac{4m^{2}-2m}{m^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+2\right)\left(4m^{2}-2m\right)\left(m-2\right)}{2\left(m^{2}-4\right)\left(4m-2\right)}
Multiply \frac{\left(m+2\right)\left(4m^{2}-2m\right)}{2\left(m^{2}-4\right)} times \frac{m-2}{4m-2} by multiplying numerator times numerator and denominator times denominator.
\frac{2m\left(m-2\right)\left(2m-1\right)\left(m+2\right)}{2^{2}\left(m-2\right)\left(2m-1\right)\left(m+2\right)}
Factor the expressions that are not already factored.
\frac{m}{2}
Cancel out 2\left(m-2\right)\left(2m-1\right)\left(m+2\right) in both numerator and denominator.
\frac{\left(m+2\right)^{2}}{2\left(m+2\right)}\times \frac{4m^{2}-2m}{m^{2}-4}\times \frac{m-2}{4m-2}
Factor the expressions that are not already factored in \frac{m^{2}+4m+4}{2m+4}.
\frac{m+2}{2}\times \frac{4m^{2}-2m}{m^{2}-4}\times \frac{m-2}{4m-2}
Cancel out m+2 in both numerator and denominator.
\frac{\left(m+2\right)\left(4m^{2}-2m\right)}{2\left(m^{2}-4\right)}\times \frac{m-2}{4m-2}
Multiply \frac{m+2}{2} times \frac{4m^{2}-2m}{m^{2}-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(m+2\right)\left(4m^{2}-2m\right)\left(m-2\right)}{2\left(m^{2}-4\right)\left(4m-2\right)}
Multiply \frac{\left(m+2\right)\left(4m^{2}-2m\right)}{2\left(m^{2}-4\right)} times \frac{m-2}{4m-2} by multiplying numerator times numerator and denominator times denominator.
\frac{2m\left(m-2\right)\left(2m-1\right)\left(m+2\right)}{2^{2}\left(m-2\right)\left(2m-1\right)\left(m+2\right)}
Factor the expressions that are not already factored.
\frac{m}{2}
Cancel out 2\left(m-2\right)\left(2m-1\right)\left(m+2\right) in both numerator and denominator.