Solve for m
m=-1
Share
Copied to clipboard
\left(m-5\right)\left(m+3\right)=\left(m-2\right)\left(m+5\right)
Variable m cannot be equal to any of the values 2,5 since division by zero is not defined. Multiply both sides of the equation by \left(m-5\right)\left(m-2\right), the least common multiple of m-2,m-5.
m^{2}-2m-15=\left(m-2\right)\left(m+5\right)
Use the distributive property to multiply m-5 by m+3 and combine like terms.
m^{2}-2m-15=m^{2}+3m-10
Use the distributive property to multiply m-2 by m+5 and combine like terms.
m^{2}-2m-15-m^{2}=3m-10
Subtract m^{2} from both sides.
-2m-15=3m-10
Combine m^{2} and -m^{2} to get 0.
-2m-15-3m=-10
Subtract 3m from both sides.
-5m-15=-10
Combine -2m and -3m to get -5m.
-5m=-10+15
Add 15 to both sides.
-5m=5
Add -10 and 15 to get 5.
m=\frac{5}{-5}
Divide both sides by -5.
m=-1
Divide 5 by -5 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}