Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{m+2}{2}-\frac{m}{m+2}+\frac{\left(-m+2\right)m^{2}}{2\left(m-2\right)\left(m+2\right)}
Factor the expressions that are not already factored in \frac{2m^{2}-m^{3}}{2m^{2}-8}.
\frac{m+2}{2}-\frac{m}{m+2}+\frac{-\left(m-2\right)m^{2}}{2\left(m-2\right)\left(m+2\right)}
Extract the negative sign in 2-m.
\frac{m+2}{2}-\frac{m}{m+2}+\frac{-m^{2}}{2\left(m+2\right)}
Cancel out m-2 in both numerator and denominator.
\frac{m+2}{2}-\frac{m}{m+2}+\frac{m^{2}}{-2\left(m+2\right)}
Cancel out -1 in both numerator and denominator.
\frac{\left(m+2\right)\left(m+2\right)}{2\left(m+2\right)}-\frac{2m}{2\left(m+2\right)}+\frac{m^{2}}{-2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and m+2 is 2\left(m+2\right). Multiply \frac{m+2}{2} times \frac{m+2}{m+2}. Multiply \frac{m}{m+2} times \frac{2}{2}.
\frac{\left(m+2\right)\left(m+2\right)-2m}{2\left(m+2\right)}+\frac{m^{2}}{-2\left(m+2\right)}
Since \frac{\left(m+2\right)\left(m+2\right)}{2\left(m+2\right)} and \frac{2m}{2\left(m+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m^{2}+2m+2m+4-2m}{2\left(m+2\right)}+\frac{m^{2}}{-2\left(m+2\right)}
Do the multiplications in \left(m+2\right)\left(m+2\right)-2m.
\frac{m^{2}+2m+4}{2\left(m+2\right)}+\frac{m^{2}}{-2\left(m+2\right)}
Combine like terms in m^{2}+2m+2m+4-2m.
\frac{m^{2}+2m+4}{2\left(m+2\right)}+\frac{-m^{2}}{2\left(m+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(m+2\right) and -2\left(m+2\right) is 2\left(m+2\right). Multiply \frac{m^{2}}{-2\left(m+2\right)} times \frac{-1}{-1}.
\frac{m^{2}+2m+4-m^{2}}{2\left(m+2\right)}
Since \frac{m^{2}+2m+4}{2\left(m+2\right)} and \frac{-m^{2}}{2\left(m+2\right)} have the same denominator, add them by adding their numerators.
\frac{2m+4}{2\left(m+2\right)}
Combine like terms in m^{2}+2m+4-m^{2}.
\frac{2\left(m+2\right)}{2\left(m+2\right)}
Factor the expressions that are not already factored in \frac{2m+4}{2\left(m+2\right)}.
1
Cancel out 2\left(m+2\right) in both numerator and denominator.