Solve for d
d=\frac{k-fx}{tx+z}
z\neq -tx
Solve for f
\left\{\begin{matrix}f=\frac{k-dz-dtx}{x}\text{, }&z\neq -tx\text{ and }x\neq 0\\f\in \mathrm{R}\text{, }&k=dz\text{ and }x=0\text{ and }z\neq 0\end{matrix}\right.
Share
Copied to clipboard
k-fx=d\left(tx+z\right)
Multiply both sides of the equation by tx+z.
k-fx=dtx+dz
Use the distributive property to multiply d by tx+z.
dtx+dz=k-fx
Swap sides so that all variable terms are on the left hand side.
\left(tx+z\right)d=k-fx
Combine all terms containing d.
\frac{\left(tx+z\right)d}{tx+z}=\frac{k-fx}{tx+z}
Divide both sides by tx+z.
d=\frac{k-fx}{tx+z}
Dividing by tx+z undoes the multiplication by tx+z.
k-fx=d\left(tx+z\right)
Multiply both sides of the equation by tx+z.
k-fx=dtx+dz
Use the distributive property to multiply d by tx+z.
-fx=dtx+dz-k
Subtract k from both sides.
\left(-x\right)f=dtx+dz-k
The equation is in standard form.
\frac{\left(-x\right)f}{-x}=\frac{dtx+dz-k}{-x}
Divide both sides by -x.
f=\frac{dtx+dz-k}{-x}
Dividing by -x undoes the multiplication by -x.
f=-\frac{dtx+dz-k}{x}
Divide dtx+dz-k by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}