Evaluate
\frac{k^{2}-10k+32}{\left(3k-8\right)\left(k+2\right)}
Differentiate w.r.t. k
\frac{28\left(k^{2}-8k+8\right)}{9k^{4}-12k^{3}-92k^{2}+64k+256}
Share
Copied to clipboard
\frac{k\left(k+2\right)}{\left(3k-8\right)\left(k+2\right)}-\frac{4\left(3k-8\right)}{\left(3k-8\right)\left(k+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3k-8 and k+2 is \left(3k-8\right)\left(k+2\right). Multiply \frac{k}{3k-8} times \frac{k+2}{k+2}. Multiply \frac{4}{k+2} times \frac{3k-8}{3k-8}.
\frac{k\left(k+2\right)-4\left(3k-8\right)}{\left(3k-8\right)\left(k+2\right)}
Since \frac{k\left(k+2\right)}{\left(3k-8\right)\left(k+2\right)} and \frac{4\left(3k-8\right)}{\left(3k-8\right)\left(k+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{k^{2}+2k-12k+32}{\left(3k-8\right)\left(k+2\right)}
Do the multiplications in k\left(k+2\right)-4\left(3k-8\right).
\frac{k^{2}-10k+32}{\left(3k-8\right)\left(k+2\right)}
Combine like terms in k^{2}+2k-12k+32.
\frac{k^{2}-10k+32}{3k^{2}-2k-16}
Expand \left(3k-8\right)\left(k+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}