Evaluate
\frac{6}{k}
Differentiate w.r.t. k
-\frac{6}{k^{2}}
Share
Copied to clipboard
\frac{\frac{k}{2}\times 4}{\frac{k}{3}k}
Divide \frac{\frac{k}{2}}{\frac{k}{3}} by \frac{k}{4} by multiplying \frac{\frac{k}{2}}{\frac{k}{3}} by the reciprocal of \frac{k}{4}.
\frac{2k}{\frac{k}{3}k}
Cancel out 2, the greatest common factor in 4 and 2.
\frac{2k}{\frac{kk}{3}}
Express \frac{k}{3}k as a single fraction.
\frac{2k\times 3}{kk}
Divide 2k by \frac{kk}{3} by multiplying 2k by the reciprocal of \frac{kk}{3}.
\frac{2\times 3}{k}
Cancel out k in both numerator and denominator.
\frac{6}{k}
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{\frac{k}{2}\times 4}{\frac{k}{3}k})
Divide \frac{\frac{k}{2}}{\frac{k}{3}} by \frac{k}{4} by multiplying \frac{\frac{k}{2}}{\frac{k}{3}} by the reciprocal of \frac{k}{4}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{2k}{\frac{k}{3}k})
Cancel out 2, the greatest common factor in 4 and 2.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{2k}{\frac{kk}{3}})
Express \frac{k}{3}k as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{2k\times 3}{kk})
Divide 2k by \frac{kk}{3} by multiplying 2k by the reciprocal of \frac{kk}{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{2\times 3}{k})
Cancel out k in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{6}{k})
Multiply 2 and 3 to get 6.
-6k^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-6k^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}