Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\frac{k\sqrt{3}}{-3\left(\sqrt{3}\right)^{2}}+2=2\sqrt{3}
Rationalize the denominator of \frac{k}{-3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{k\sqrt{3}}{-3\times 3}+2=2\sqrt{3}
The square of \sqrt{3} is 3.
\frac{k\sqrt{3}}{-9}+2=2\sqrt{3}
Multiply -3 and 3 to get -9.
\frac{k\sqrt{3}}{-9}=2\sqrt{3}-2
Subtract 2 from both sides.
k\sqrt{3}=-18\sqrt{3}+18
Multiply both sides of the equation by -9.
\sqrt{3}k=18-18\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}k}{\sqrt{3}}=\frac{18-18\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
k=\frac{18-18\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
k=6\sqrt{3}-18
Divide -18\sqrt{3}+18 by \sqrt{3}.