Solve for k
k=6\left(\sqrt{3}-3\right)\approx -7.607695155
Share
Copied to clipboard
\frac{k\sqrt{3}}{-3\left(\sqrt{3}\right)^{2}}+2=2\sqrt{3}
Rationalize the denominator of \frac{k}{-3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{k\sqrt{3}}{-3\times 3}+2=2\sqrt{3}
The square of \sqrt{3} is 3.
\frac{k\sqrt{3}}{-9}+2=2\sqrt{3}
Multiply -3 and 3 to get -9.
\frac{k\sqrt{3}}{-9}=2\sqrt{3}-2
Subtract 2 from both sides.
k\sqrt{3}=-18\sqrt{3}+18
Multiply both sides of the equation by -9.
\sqrt{3}k=18-18\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}k}{\sqrt{3}}=\frac{18-18\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
k=\frac{18-18\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
k=6\sqrt{3}-18
Divide -18\sqrt{3}+18 by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}