Solve for k
\left\{\begin{matrix}k=0\text{, }&x\neq 0\text{ and }x\neq 80\\k\in \mathrm{R}\text{, }&x=\frac{5\sqrt[3]{1728\sqrt{323}+30673}+5\sqrt[3]{30673-1728\sqrt{323}}+5}{9}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{5\left(\sqrt[3]{1728\sqrt{323}+30673}+\sqrt[3]{30673-1728\sqrt{323}}+1\right)}{9}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\setminus 0,80\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x-80\right)^{2}k\times 50\times 5=x^{2}kx\times 30\times 5
Multiply both sides of the equation by x^{2}\left(x-80\right)^{2}, the least common multiple of x^{2},\left(80-x\right)^{2}.
\left(x^{2}-160x+6400\right)k\times 50\times 5=x^{2}kx\times 30\times 5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-80\right)^{2}.
\left(x^{2}-160x+6400\right)k\times 250=x^{2}kx\times 30\times 5
Multiply 50 and 5 to get 250.
\left(x^{2}k-160xk+6400k\right)\times 250=x^{2}kx\times 30\times 5
Use the distributive property to multiply x^{2}-160x+6400 by k.
250x^{2}k-40000xk+1600000k=x^{2}kx\times 30\times 5
Use the distributive property to multiply x^{2}k-160xk+6400k by 250.
250x^{2}k-40000xk+1600000k=x^{3}k\times 30\times 5
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
250x^{2}k-40000xk+1600000k=x^{3}k\times 150
Multiply 30 and 5 to get 150.
250x^{2}k-40000xk+1600000k-x^{3}k\times 150=0
Subtract x^{3}k\times 150 from both sides.
250x^{2}k-40000xk+1600000k-150x^{3}k=0
Multiply -1 and 150 to get -150.
\left(250x^{2}-40000x+1600000-150x^{3}\right)k=0
Combine all terms containing k.
\left(1600000-40000x+250x^{2}-150x^{3}\right)k=0
The equation is in standard form.
k=0
Divide 0 by 250x^{2}-40000x+1600000-150x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}