Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k+4\right)\left(k+8\right)}{\left(k+8\right)^{2}}\times \frac{k^{2}+8k}{k^{2}+8k+16}
Factor the expressions that are not already factored in \frac{k^{2}+12k+32}{k^{2}+16k+64}.
\frac{k+4}{k+8}\times \frac{k^{2}+8k}{k^{2}+8k+16}
Cancel out k+8 in both numerator and denominator.
\frac{\left(k+4\right)\left(k^{2}+8k\right)}{\left(k+8\right)\left(k^{2}+8k+16\right)}
Multiply \frac{k+4}{k+8} times \frac{k^{2}+8k}{k^{2}+8k+16} by multiplying numerator times numerator and denominator times denominator.
\frac{k\left(k+4\right)\left(k+8\right)}{\left(k+8\right)\left(k+4\right)^{2}}
Factor the expressions that are not already factored.
\frac{k}{k+4}
Cancel out \left(k+4\right)\left(k+8\right) in both numerator and denominator.
\frac{\left(k+4\right)\left(k+8\right)}{\left(k+8\right)^{2}}\times \frac{k^{2}+8k}{k^{2}+8k+16}
Factor the expressions that are not already factored in \frac{k^{2}+12k+32}{k^{2}+16k+64}.
\frac{k+4}{k+8}\times \frac{k^{2}+8k}{k^{2}+8k+16}
Cancel out k+8 in both numerator and denominator.
\frac{\left(k+4\right)\left(k^{2}+8k\right)}{\left(k+8\right)\left(k^{2}+8k+16\right)}
Multiply \frac{k+4}{k+8} times \frac{k^{2}+8k}{k^{2}+8k+16} by multiplying numerator times numerator and denominator times denominator.
\frac{k\left(k+4\right)\left(k+8\right)}{\left(k+8\right)\left(k+4\right)^{2}}
Factor the expressions that are not already factored.
\frac{k}{k+4}
Cancel out \left(k+4\right)\left(k+8\right) in both numerator and denominator.