Evaluate
3+2i
Real Part
3
Share
Copied to clipboard
\frac{1-2i^{2}+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}}
Calculate i to the power of 4 and get 1.
\frac{1-2\left(-1\right)+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}}
Calculate i to the power of 2 and get -1.
\frac{1-\left(-2\right)+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}}
Multiply 2 and -1 to get -2.
\frac{1+2+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}}
The opposite of -2 is 2.
\frac{3+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}}
Add 1 and 2 to get 3.
\frac{3-1-3i^{9}}{i^{16}-i^{20}+i^{35}}
Calculate i to the power of 6 and get -1.
\frac{2-3i^{9}}{i^{16}-i^{20}+i^{35}}
Subtract 1 from 3 to get 2.
\frac{2-3i}{i^{16}-i^{20}+i^{35}}
Calculate i to the power of 9 and get i.
\frac{2-3i}{1-i^{20}+i^{35}}
Calculate i to the power of 16 and get 1.
\frac{2-3i}{1-1+i^{35}}
Calculate i to the power of 20 and get 1.
\frac{2-3i}{0+i^{35}}
Subtract 1 from 1 to get 0.
\frac{2-3i}{-i}
Calculate i to the power of 35 and get -i.
\frac{3+2i}{1}
Multiply both numerator and denominator by imaginary unit i.
3+2i
Divide 3+2i by 1 to get 3+2i.
Re(\frac{1-2i^{2}+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}})
Calculate i to the power of 4 and get 1.
Re(\frac{1-2\left(-1\right)+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}})
Calculate i to the power of 2 and get -1.
Re(\frac{1-\left(-2\right)+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}})
Multiply 2 and -1 to get -2.
Re(\frac{1+2+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}})
The opposite of -2 is 2.
Re(\frac{3+i^{6}-3i^{9}}{i^{16}-i^{20}+i^{35}})
Add 1 and 2 to get 3.
Re(\frac{3-1-3i^{9}}{i^{16}-i^{20}+i^{35}})
Calculate i to the power of 6 and get -1.
Re(\frac{2-3i^{9}}{i^{16}-i^{20}+i^{35}})
Subtract 1 from 3 to get 2.
Re(\frac{2-3i}{i^{16}-i^{20}+i^{35}})
Calculate i to the power of 9 and get i.
Re(\frac{2-3i}{1-i^{20}+i^{35}})
Calculate i to the power of 16 and get 1.
Re(\frac{2-3i}{1-1+i^{35}})
Calculate i to the power of 20 and get 1.
Re(\frac{2-3i}{0+i^{35}})
Subtract 1 from 1 to get 0.
Re(\frac{2-3i}{-i})
Calculate i to the power of 35 and get -i.
Re(\frac{3+2i}{1})
Multiply both numerator and denominator of \frac{2-3i}{-i} by imaginary unit i.
Re(3+2i)
Divide 3+2i by 1 to get 3+2i.
3
The real part of 3+2i is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}