Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(f-1\right)\left(f+1\right)}{\left(f+1\right)\left(f+4\right)}-\frac{\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of f+4 and f+1 is \left(f+1\right)\left(f+4\right). Multiply \frac{f-1}{f+4} times \frac{f+1}{f+1}. Multiply \frac{f-1}{f+1} times \frac{f+4}{f+4}.
\frac{\left(f-1\right)\left(f+1\right)-\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)}
Since \frac{\left(f-1\right)\left(f+1\right)}{\left(f+1\right)\left(f+4\right)} and \frac{\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{f^{2}+f-f-1-f^{2}-4f+f+4}{\left(f+1\right)\left(f+4\right)}
Do the multiplications in \left(f-1\right)\left(f+1\right)-\left(f-1\right)\left(f+4\right).
\frac{-3f+3}{\left(f+1\right)\left(f+4\right)}
Combine like terms in f^{2}+f-f-1-f^{2}-4f+f+4.
\frac{-3f+3}{f^{2}+5f+4}
Expand \left(f+1\right)\left(f+4\right).
\frac{\left(f-1\right)\left(f+1\right)}{\left(f+1\right)\left(f+4\right)}-\frac{\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of f+4 and f+1 is \left(f+1\right)\left(f+4\right). Multiply \frac{f-1}{f+4} times \frac{f+1}{f+1}. Multiply \frac{f-1}{f+1} times \frac{f+4}{f+4}.
\frac{\left(f-1\right)\left(f+1\right)-\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)}
Since \frac{\left(f-1\right)\left(f+1\right)}{\left(f+1\right)\left(f+4\right)} and \frac{\left(f-1\right)\left(f+4\right)}{\left(f+1\right)\left(f+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{f^{2}+f-f-1-f^{2}-4f+f+4}{\left(f+1\right)\left(f+4\right)}
Do the multiplications in \left(f-1\right)\left(f+1\right)-\left(f-1\right)\left(f+4\right).
\frac{-3f+3}{\left(f+1\right)\left(f+4\right)}
Combine like terms in f^{2}+f-f-1-f^{2}-4f+f+4.
\frac{-3f+3}{f^{2}+5f+4}
Expand \left(f+1\right)\left(f+4\right).