Solve for f (complex solution)
f\in \mathrm{C}
g\neq 0\text{ and }x\neq 0
Solve for f
f\in \mathrm{R}
g\neq 0\text{ and }x\neq 0
Solve for g
g\neq 0
x\neq 0
Graph
Share
Copied to clipboard
fx=fx\left(gx\right)^{-1}gx
Multiply both sides of the equation by gx.
fx=fx^{2}\left(gx\right)^{-1}g
Multiply x and x to get x^{2}.
fx=fx^{2}g^{-1}x^{-1}g
Expand \left(gx\right)^{-1}.
fx=fx^{1}g^{-1}g
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
fx=fxg^{-1}g
Calculate x to the power of 1 and get x.
fx-fxg^{-1}g=0
Subtract fxg^{-1}g from both sides.
fx-\frac{1}{g}fgx=0
Reorder the terms.
fxg-\frac{1}{g}fgxg=0
Multiply both sides of the equation by g.
fxg-\frac{1}{g}fg^{2}x=0
Multiply g and g to get g^{2}.
fxg-\frac{f}{g}g^{2}x=0
Express \frac{1}{g}f as a single fraction.
fxg-\frac{fg^{2}}{g}x=0
Express \frac{f}{g}g^{2} as a single fraction.
fxg-fgx=0
Cancel out g in both numerator and denominator.
0=0
Combine fxg and -fgx to get 0.
\text{true}
Compare 0 and 0.
f\in \mathrm{C}
This is true for any f.
fx=fx\left(gx\right)^{-1}gx
Multiply both sides of the equation by gx.
fx=fx^{2}\left(gx\right)^{-1}g
Multiply x and x to get x^{2}.
fx=fx^{2}g^{-1}x^{-1}g
Expand \left(gx\right)^{-1}.
fx=fx^{1}g^{-1}g
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
fx=fxg^{-1}g
Calculate x to the power of 1 and get x.
fx-fxg^{-1}g=0
Subtract fxg^{-1}g from both sides.
fx-\frac{1}{g}fgx=0
Reorder the terms.
fxg-\frac{1}{g}fgxg=0
Multiply both sides of the equation by g.
fxg-\frac{1}{g}fg^{2}x=0
Multiply g and g to get g^{2}.
fxg-\frac{f}{g}g^{2}x=0
Express \frac{1}{g}f as a single fraction.
fxg-\frac{fg^{2}}{g}x=0
Express \frac{f}{g}g^{2} as a single fraction.
fxg-fgx=0
Cancel out g in both numerator and denominator.
0=0
Combine fxg and -fgx to get 0.
\text{true}
Compare 0 and 0.
f\in \mathrm{R}
This is true for any f.
fx=fx\left(gx\right)^{-1}gx
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gx.
fx=fx^{2}\left(gx\right)^{-1}g
Multiply x and x to get x^{2}.
fx=fx^{2}g^{-1}x^{-1}g
Expand \left(gx\right)^{-1}.
fx=fx^{1}g^{-1}g
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
fx=fxg^{-1}g
Calculate x to the power of 1 and get x.
fxg^{-1}g=fx
Swap sides so that all variable terms are on the left hand side.
\frac{1}{g}fgx=fx
Reorder the terms.
1fgx=fxg
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
1fgx-fxg=0
Subtract fxg from both sides.
0=0
Combine 1fgx and -fxg to get 0.
\text{true}
Compare 0 and 0.
g\in \mathrm{R}
This is true for any g.
g\in \mathrm{R}\setminus 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}